You need to enable JavaScript in order to use the AI chatbot tool powered by ChatBot

Blogs

Pioneering Hepatic System Just Named Cell Biology Product of the Year
Body

 

TruVivo All-human 2D+ Hepatic System
Figure 1. Schematic representation of the TruVivo system depicting each cell type and self-assembled hepatocyte colonies

 

 

 

 

 

 

 

 

TruRELEVANCE

TruVivo mimics the microarchitecture of the human liver. Primary human hepatocytes, cultured at an optimized ratio with human endothelial and stromal cells, retain their native cuboidal morphology and self-assemble to form in vivo-like hepatocyte colonies with extensive cell-to-cell connections, including tight and gap junctions and bile canalicular networks. Albumin and urea production are within human physiologically relevant ranges, and Phase I and II metabolic pathways are sustained for at least 2 weeks.

TruRELIABILITY

TruVivo offers accurate, consistent results. Each batch of hepatocytes and feeder cells used in the system have been extensively characterized and pre-qualified to reduce experimental variability and aid in fit-for-purpose lot selection. Features of the hepatocyte lot that are available to the user include donor medical and social history, histopathological scoring and assessment, genotyping, phase I and II enzyme activity, and CYP enzyme induction.

TruSIMPLICITY

TruVivo is easy to use and adaptable to the user’s timeline and workflow needs. The system is provided in ready-to-use kits with cryopreserved cells and optimized media sufficient for at least two weeks in culture. TruVivo requires only basic cell culture experience and standard equipment. Experiments can begin in as little as five days after culture setup. Flexibility in seeding densities, media changes, and more provide the user with the adaptability to meet unique assay needs.

A New Alternative for Drug Discovery

Enzyme and transporter activity remains relatively high and stable in TruVivo for at least two weeks. CYP3A4 induction response is also robust and stable for over 2 weeks.  

 

A collage of different colored graphs

Description automatically generated with medium confidence
Fig 2. Enzyme activity levels of one hepatocyte lot in TruVivo compared to suspension culture. Stable phenotype was established in TruVivo at about day five and remained stable through the next two weeks. Data generated and provided by Piekos et al., Boehringer Ingelheim, Nonclinical DMPK. Shared with permission.

 

 

A comparison of the number of ph and the number of ph

Description automatically generated with medium confidence
Figure 3. Uptake transporter activities in TruVivo compared to plated hepatocytes (PH) over time. Activities changed with culture time in both formats; however, on day 8, TruVivo retained 61 to 100% of initial transporter activities, whereas plated hepatocytes retained 4 to 70%. OATP1B1 and/or OATP2B1, and NTCP activities were 1.5 to 4.7-fold higher in TruVivo compared to PH. OATP1B3 activity was retained in TruVivo but not measurable in PH. Data generated and provided by Mitra et al., Boehringer Ingelheim, Nonclinical DMPK. Shared with permission.
A graph of different colored bars

Description automatically generated
Figure 4. Three different hepatocyte lots were cultured in TruVivo and uninduced (light shaded bars) and induced (dark shaded bars) CYP3A4 activity levels were measured on days 4, 10, and 16. *** p≤0.001 versus uninduced samples at same time point. Mean ± SD. These results indicate retention of metabolic activity and nuclear receptor response in hepatocytes cultured in TruVivo that is stable over time and significantly greater than in sandwich cultures. Weaver, J. R., et al. 2023.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A table with numbers and text

Description automatically generated
Table 1. Four substrates representing different metabolic clearance rates were administered in the TruVivo system. CYP450-based midazolam, dextromethorphan, and tolbutamide represent high-, mid, and low-turnover compounds respectively. Lorazepam is a substrate representing mainly Phase II metabolism. *Known in vivo systemic clearance values as reported by Goodman and Gilman 11th ed. (2006). Calculated systemic clearance rates in TruVivo were compared to reported in vivo values and were predictive of in vivo clearance rates, except notably for dextromethorphan. The systemic clearance value calculated in TruVivo for dextromethorphan is representative of a poor metabolizer, which upon further investigation, correlates to the donor’s genotype that included alleles indicative of a poor metabolizer phenotype.

 

Conclusion

Date